

OUTLINE

- Introduction to Clean Energy Systems
- Mendota Carbon-Negative Energy Project
 - CNE How it Works
 - Mendota Project Overview
 - Highlights from EPA Class VI Permit Application
- Summary & Next Steps

CES I COMPANY BACKGROUND & OVERVIEW

- Founded in 1993 by former Aerojet (a GenCorp company) aerospace engineers;
 incorporated in 1996, Clean Energy Systems, Inc. (CES)
- Multiple locations in California; Headquarters in Rancho Cordova (Sacramento Area)
- Over 30 patents issued on zero-emissions oxy-combustion technologies and power cycles
- More than 20 years and \$135 MM invested to develop enabling technologies for advanced clean energy systems; includes:
 - o Oxy-Fuel (O-F) Pressurized Direct and Indirect Steam Gas Generators, Reheat Combustors, Compact Diffusion Bonded Heat Exchangers, and O-F Turbines (OFTs)
- Today, working to develop and deploy <u>Carbon Negative Energy (CNE)</u> projects across the state of California, taking advantage of unique attributes
 - Solusing a multi-phase deployment plan beginning with retrofit and restart of idled biomass facilities in the Central Valley

CNE I HOW IT WORKS

CES CNE plants gasify waste biomass fuels to produce syngas, from which hydrogen is separated for sale to the transportation sector. The resulting hydrogen-depleted syngas is used in CES' oxy-fuel power block to produce electricity with full carbon capture. Generated electricity can be used for plant loads and/or sold for electric vehicle charging.

By using fuel that consumes carbon over its lifetime and safely and permanently storing produced CO_2 , the process results in net-negative carbon emissions, effectively removing CO_2 (greenhouse gas) from the atmosphere.

CES IPOWER BLOCK

CES I CALIFORNIA FACILITIES

CNE I POTENTIAL PROJECTS ACROSS CALIFORNIA

- At least 15 idle biomass power plants in California today (>375 MW), with more anticipated to close in the coming years
- A comparison of idle biomass facilities to California's sedimentary basins shows excellent potential for carbon capture and storage and possible use in enhanced oil or gas recovery (EOR/EGR)

Several benefits of retrofit deployment strategy

Map Courtesy of WESTCARB

Sedimentary Basin Status

Basin with Carbon Sequestration Potential

Basins lacking Carbon Sequestration Potential

Offshore Basins with Unkown

Carbon Seguestration Potential

CNE I COMMUNITY BENEFITS

- Revitalization of existing biomass plants, supporting economic growth and jobs
- Elimination of criteria pollutant and CO₂ greenhouse gas emissions – improving local air quality
- Reduction and possible elimination of open field burning of agricultural wastes – solving waste management issues
- Decarbonization of the California transportation sector
 - o Electricity or hydrogen from CNE plants removes ~3 lbs of CO₂ from the atmosphere for every mile driven
- · Helps address tree mortality and wildfire crisis in the state
- Absolute necessity to meet the world's goal of less than 2 °C global temperature rise

CALIFORNIA AIR QUALITY

2019 American Lung Association "State of the Air" Report

Top 10 Most Polluted U.S. Cities:

	Ozone		Short-Term Particle Pollution (24-hour PM _{2.5})		Year-Round Particle Pollution (Annual PM _{2.5})
1	Los Angeles-Long Beach, CA	1	Bakersfield, CA	7	Fresno-Madera-Hanford, CA
2	Visalia, CA	2	Fresno-Madera-Hanford, CA	2	Bakersfield, CA
3	Bakersfield, CA	3	Fairbanks, AK	3	Fairbanks, AK
4	Fresno-Madera-Hanford, CA	4	San Jose-San Francisco-Oakland, CA	4	Visalia, CA
5	Sacramento-Roseville, CA	5	Missoula, MT	5	Los Angeles-Long Beach, CA
6	San Diego-Chula Vista-Carlsbad, CA	6	Yakima, WA	6	San Jose-San Francisco-Oakland, CA
7	Phoenix-Mesa, AZ	7	Los Angeles-Long Beach, CA	7	Pittsburgh-New Castle-Weirton, PA-OH-WV
8	San Jose-San Francisco-Oakland, CA	8	Salt lake City-Provo-Orem, UT	8	El Centro, CA
9	Houston-The Woodlands, TX	9	Seattle-Tacoma, WA	9	Cleveland-Akron-Canton, OH
10	New York-Newark, NY-NJ-CT-PA	10	Pittsburgh-New Castle-Weirton, PA-OH-WV	10	Medford-Grants Pass, OR

. . . .

CNE I PROJECT SITE #1

Mendota CNE Plant (Expected Online 2022)

- Former Covanta Biomass Power Plant; operational through 2015
 - o In due diligence to acquire site; closing in the next month or two
- 80-acre site on the east side of the City of Mendota (Fresno County);
 in the heart of the San Joaquin Valley, surrounded by agriculture
- 600 TPD biomass input; local agricultural and urban wood wastes
- Generating up to ~4,000 kg/day renewable H₂ or 6 MW electricity
- Capturing and permanently storing ~1050 USTPD (~950 mTPD) CO₂
 - \circ Removes approx. 350,000 TPY, or 7 million tons of CO₂ from the atmosphere over a 20-year operating life
 - o Equivalent to removing more than 68,500 passenger vehicles from the roads each year
- Plant will make use of existing infrastructure including biomass (fuel) handling systems, cooling towers, power and electrical systems
 - o Replace existing biomass-fired CFB with gasifier, oxygen supply system, and CES oxy-combustion power block
 - o Add CO₂ processing and storage equipment

. . . .

CNE I MENDOTA PROJECT; EPA PERMITTING PROCESS

Reviewing the Permit Application (Sestion 288)

- Asia and Correction Arthur Conton 4-1-2
- Contract Contract

- Imaggency and Femerical Response (Section 4 100)

Preparing the Permit Section 6.2.

Planning for the Pre-Operation Review (Section 4.3)

- CES Mendota currently in the Pre-Construction phase of EPA permitting process
 - o EPA permitting running parallel with other project development activities
- Class VI underground injection control (UIC) permit application submitted in Feb-2020
 - o CES working with Schlumberger to develop application material
 - Passed Administrative Review, now under Technical Review
- Models and documents developed using existing public or commercially licensed data;
 i.e. no wells have been drilled on site
 - Good amount of information available due to past exploration in the region

Clean Energy Systems
EPA Class VI UIC Permit Application Kick Off Meeting for the CES Mendota Site

4/08/2020

Wayne Rowe

Wade Zaluski

Lee Swager

Julian Ogolo

Schlumberger-Private

Agenda

- Site Location
- Subsurface Geology
- Groundwater Wells
- Simulated CO₂ Plume
- CO₂ Injection Well Construction
- Oil and gas wells within a 2.5 mile radius of the proposed Mendota_INJ_1
- Historical Seismicity

Site Location

Schlumberger

Subsurface Geology

Schlumberger

Schlumberger-Private

Subsurface Geology

Schlumberger

Groundwater Wells

How deep

Schlumberger

Schlumberger-Private

Simulated CO₂ Plume

CO₂ Injection Well Construction

Oil and gas wells within a 2.5 mile radius of the proposed Mendota_INJ_1

Schlumberger

Schlumberger-Private

Historical Seismicity

Historical Seismicity

Schlumberger

. . . .

CNE I SUMMARY & NEXT STEPS

- CES has been working for 25 years to adapt and deploy proprietary oxy-combustion technologies to enable cost-effective carbon capture for sequestration The Power to Reverse Climate Change
- Currently working to deploy Carbon Negative Energy (CNE) plants across California on a retrofit basis, starting with the Mendota Biomass facility in Fresno County
 - \circ CNE plants have the potential to generate renewable power and/or fuels (i.e. hydrogen) while effectively removing millions of tons of CO₂ from the atmosphere and revitalizing existing assets
- Working with Schlumberger, CES has developed and submitted Class VI UIC permit application to EPA using existing subsurface data; pre-construction application under technical evaluation
- Next steps include:
 - o Continue project development activities of the first two CNE project sites, e.g. finalize and secure feedstock and offtake agreements, complete EPC work, secure LCFS pathway, etc.
 - Develop and submit Carbon Capture and Sequestration (CCS) Project application to the California Air Resources Board (CARB)
 - o Work with local regulators and representatives on additional permitting and public outreach activities

Rebecca Hollis, Direct of Business Development - CNE RHollis@CleanEnergySystems.com

Office: +1 916-638-7967, or visit

www.CleanEnergySystems.com/cne

. . . .

REFERENCE SLIDES

CES ENABLING TECHNOLGY I PRESSURIZED OXY-COMBUSTION

Derived from the American space program, CES combustion systems burn nearly pure oxygen (instead of air) with fuel such as natural gas, associated gas, syngas, high-CO₂ content natural gas, or liquid fuels, for a cleaner, more efficient combustion process

The intimate mixing of gases via unique IP creates combustion with only water (high pressure steam) and CO₂ as its two products which are easily separated for capture and storage

CES I DIRECT STEAM GAS GENERATORS

Compact system produces only steam and high purity CO_2 (when burning a hydrocarbon based fuel), and massive amounts of thermal energy

- Current designs with 10 cm
 (4 inch) or 30 cm (12 inch)
 internal diameter
- Range from 10 to 200 MWt delivering temperatures up to 1,650 °C (3,000 °F) and capable of pressures over 110 bar (1,600 psi)

- Water injection and jacket cooling incorporated for long life
- Standalone installation-Includes control and monitoring system
- Ramps to full power in seconds

CES I OXY-FUEL TURBINES

With development partners, turbines designed for high-quality steam and high CO_2 -content drive gas

- Currently two turbines retrofit; modified for pressurized steam/CO₂ gas
- Removed front-end compressor section and replaced with steam/CO₂ inlet and thrust balance system
- · Operate at gas turbine conditions

GE J79 retrofit to OFT-J79

Up to 43 MWe from 12 MWe baseline

SGT-900 (W251 B12) retrofit to OFT-900

- Up to 150 MWe from 43 MWe baseline
- Makes use of CES reheat combustors
- · CES, FTT, and Siemens design

Schlumberger